

DMFC DEVELOPMENT PROGRAM

- DARPA and ARO funded effort
- 150 W Portable DMFC Power System for DOD applications
 - Materials
 - Membrane-Electrode Assemblies
 - Stacks
 - Integrated Packaged Power Source

INTRINSIC ADVANTAGES FOR SYSTEM DESIGN

Aqueous -Liquid Feed DMFC

- Effective Heat Removal
- More uniform stack temperature
- Reduced Complexity of Stack design
- No membrane dry out issues

Direct Oxidation

- Reduces System Parts count and weight
- Reduces Control complexity

LAYOUT OF A DIRECT METHANOL FUEL CELL SYSTEM

1M MeOH, DMFC ELECTRICAL PERFORMANCE

• 0.52 V at 300 mA/cm², 0.48 V at 400 mA/cm², Air 20 psig

CELL PERFORMANCE WITH INCREASED METHANOL CONCENTRATION

Concentration Of Methanol	Crossover Rate@ 90 C, 0.4 V, mA/cm2
1 M	85
2 M	176

• Performance is higher. Crossover rate also higher

ELECTROCHEMICAL FACTORS RELEVANT TO SYSTEM PERFORMANCE

ELECTROCHEMICAL FACTORS
Power Density, mW/cm² (operating point on V-I
curve)
• Catalytic activity (Pt-Ru,)
• Ionic conductivity (Nafion,)
Electrode/ MEA characteristics
Reactant and Product Mass Transfer
Concentration (Methanol Molarity)
• Pressure (Air)
Flow rates (Relative to stoichiometric)
Temperature
Humidity
Flow field design features
Water handling through the stack
Electro-osmotic transport (membrane type)
Temperature of operation
Heat generation processes
• Irreversibility (Deviation from Thermoneutral
potential)
Crossover Rate (parasitic heat generation)
Degenerative processes
Short term stability (for. e.g. flooding, dry out)
Long term irreversible loss (catalyst poisoning membrane degradation)

CROSSOVER RATE MEASUREMENTS

- In line CO₂ Analyzer; Horiba VIA-550
- Calculation
 - Convert CO₂ Volume % into a volume flow rate of CO₂.
 - Use Ideal Gas Law to calculate a mole of CO₂/sec value.

$$n = PV/RT$$
 (1)

 Use Faraday's Law to calculate an effective current which can be normalized into a current density.

$$I = n Fn_e (2)$$

- Advantages of this method
 - Can see the effects of anode methanol consumption on crossover.
 - Is a true reflection of the CO₂ production in an operating cell.

CROSSOVER TEST, 0.5M MeOH

• Crossover Current Density Increases With Temperature.

CROSSOVER TEST, 1.0M MeOH

• Crossover Current Density Decreases With Applied Current Density.

CROSSOVER TEST, 1.5M MeOH

• Crossover Current Density Increases With Methanol Concentration.

CROSSOVER TEST, 100 mA/cm²

• Crossover Current Density Increases With Temperature and Methanol Molarity.

IV PERFORMANCE, 60C MeOH

• Molarity has a greater impact on DMFC performance than airflow rate.

EXCESS WATER RECOVERY AND ITS DEPENDENCE ON STOICHIOMETRY

• WATER BALANCE CANNOT BE ACHIEVED WITH A CONDENSER AT HIGH STOICHIOMETRY, > 37°C AMBIENT

IMPACT OF CONDENSER DUTY ON SYSTEM SIZE AND WEIGHT

- Condensing equipment are heavy (200Wth/kg)
- Air moving equipment require power (1We/25Wth)
- Allowance for air flow through condensers
 - increased system volume
- Water handling and return
 - pumps, valves, controls, additional power demand
- IDEALLY A CONDENSER IS TO BE AVOIDED
 - Possible if the stack can be operated at very low air flow stoichiometry.

ANODE POLARIZATION SUBTRACTION

Polarization Analysis

 Ecell, at any air flow rate, can be added to Ea at the same molarity and temperature to get Ec corresponding to the flow rate.

$$E_c = E_{cell} + E_a$$
 (1)

 When E_a and E_c are plotted together as a function of current density, the kinetics of the reaction can be seen.

Cathode performance correction

- The volume percent of CO₂ produced at the anode can be converted into an equivalent current, I_{cr}.
- The total current applied to the cathode becomes:

$$I_{\text{true}} = I_{\text{app}} + I_{\text{cr}}$$
 (4).

Now E_c , mix can simply be called E_c .

E_c should be a constant regardless of methanol molarity.

CATHODE POTENTIALS, 60C, 0.1 L/min, AIR

• The DMFC cathode is starved for O₂, when operating on 1M MeOH.

TRUE CATHODE POTENTIALS, 60C

ullet 1.0M Methanol in O_2 mass transfer limited regime regardless of airflow.

IV COMPARISON 60C, 0.5M MeOH, 0.1 L/min, AMBIENT AIR

• A 30mV at 100 mA/cm² improvement can be achieved with a novel cathode structure.

THE CURRENT DENSITY ATTAINED AT MAXIMUM EFFICIENCY

• Current density at maximum efficiency point increases with temperature and concentration

EFFECT OF CROSSOVER AND TEMPERATURE ON MAXIMUM EFFICIENCY

• Maximum efficiency decreases with increasing temperature at all molarities

PROJECTED IMPROVEMENT IN EFFICIENCY WITH LOW CROSSOVER MEMBRANES

•Efficiencies greater than 40% are projected with membranes exhibiting low methanol crossover

SUMMARY

- System Performance sensitivity very high to
 - air flow rate
 - concentration of methanol
- Air flow rate performance 1.5-1.75 x stoic
 - essential to avoid water recovery
 - extend temperature range of operation
- Operation at lower stack temperatures(60°C)
 - Will lead to higher system performance
- Concentration control necessary to achieve good system stability
 - viable methanol concentration sensor demonstrated

Acknowledgements

- DARPA-DSO
- NASA- JPL, Caltech